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Recalling the 'conditional joint probability law' of m normalized structure factors [Tsoucaris (1969), 
C.R. Acad. Sci. Paris, Sdr. B, 268, 875; (1970). Acta Cryst. A26, 492] the conditional probability density 
is established for three moduli, assuming that the structure invariant e is known. Then, using the Bayes 
theorem, in order to 'invert' the role of random variables and known parameters, the probability density 
of e is obtained under the condition that the moduli are fixed. By the application of the axiom of joint 
probabilities for vectors running over all reciprocal lattice points located within the observable Ewald 
sphere, the expression for one phase invariant e is derived as a function of all observed moduli p(elall 
moduli). 

Introduction - statement of the problem 

The introduction of the probability concept into crys- 
tallography (Wilson, 1948; Karle & Hauptman, 1953) 
gave rise to an interesting new field in statistics: indeed, 
diffraction techniques yield a sample of several thou- 
sands of measurements connected by probability rela- 
tions. 

In this paper we wish. to show how 'conditional joint 
probability theory' (Tsoucaris, 1969, 1970; De Rango, 
Tsoucaris & Zelwer, 1969) enables us to obtain in- 
formation about one phase by using the whole set of 
observed moduli. 

We recall first that the conditional joint probability 
law of m normalized structure factors (E~...  Ep . . .  Era) 
is an m dimensional Laplace-Gauss law involving the 
definite positive Hermitian form Qm (in non-centro- 
symetric space groups:equation (8) of Tsoucaris, 1970), 

1 
p(E1. . .E~IUp~)- (2~z)mD1/z exp ( -Qm)  . (1) 

The complex structure factors involved in equation (1) 
are defined by the following reciprocal lattice vectors" 

Hp p = 1 . . . m :  fixed vectors. 
Up~ = Unp_u,: unitary structure factors, ele- 

ments of matrix [U] where values 
are assumed fixed and known 
in both amplitude and phase. 

L: primitive random vector run- 
ning uniformly over all recip- 
rocal lattice points. 

E1 = AI + iB1 = E~ -rip: (derived) random variables. 

The Hem'titian form Qm is defined by equation (9b) 
of Tsoucaris (1970) 

e . =  e .  tu-'lr= e, C o , . =  u - -  
p=-lq=-I 

D m -  a -- Dm 

Dm 
(2) 

E :m-dimensional column vector (Ea...Em). 
E n" Hermitian tranpose of E (E~" conjugate of Ep). 

Dpq :elements of the inverse matrix [U] -1. 
N: total number of atoms in the unit cell (we as- 

sume, for simplicity, that all atoms are iden- 
tical, but the results can be generalized). 

Din+l: Karle-Hauptman determinant obtained by add- 
ing an ( m + l ) t h  column and row (elements: 
E L - n J V N )  to the determinant Din. 

The vertical bar on the left-hand side of equation (1) 
expresses the fact that we are looking for the joint 
probability density of m structure factors El.. .Era 
under the condition that all structure factors Up. . .  
(elements of matrix [U]) are fixed and known. 

In a previous paper (Tsoucaris, 1970), it has been 
shown that the 'cosine invariant' formula of Karle & 
Hauptman (1957) could be obtained from the prob- 
ability theory concerning the D4 determinant; more- 
over it has been suggested that the use of the probability 
theory could provide more information about phases 
than that conveyed by the averaging formulas of Karle 
& Hauptman. 

In this paper, we shall apply the above probability 
law for m = 3. 

After a convenient change of notation: Ha=0,  
H2=H, H3=K, El=EL, E2=EL-., E3=EL_~, we 
write: 

1 Un UK 'EL 
1 U_n 1 UK_n E ~ _ .  

D m + I - = D 4 =  -)V × U_ K UH_ K 1 I EL-I~ 

E _ ,  En-L EK-L N 

and, for the probability density" 

p(E~,Ez, E3I U., UK, U._~:) 
=(2r0-aDa a/2 exp ( - Q 3 ) .  (3) 

Also, it has been proved that the above expression does 
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not depend on the individual phases fan, ~OK, ~OK-H, but 
solely on the value of the structure invariant ~, 

In order to emphasize the dependence of the probabil- 
ity distribution on the value of ~, we will use the nota- 
tion of equation (3a) instead of that of equation (3) 
[strictly, one should write: p(EI, E2, E3IH, K)]. 

p(Ea, E2,E3I~)=(2zc)-3D~ ~/z exp ( -  Q3). (3a) 

The present problem consists in obtaining the prob- 
ability density of ~t, under the condition that all ob- 
served moduli are known: 

P(~I all moduli) [see equation (7)]. 

This can be performed in two steps: 
I. We assume for the moment that, conversely, ~ is 
known, and we establish the conditional probability 
density for three moduli: 

p(R~,R2,R3[o 0 [see equation (5)] 

with the following notation: 

Et = R~ e "~ 
E2 = R2 e l~'2 
E 3 = R 3 e ~.3. 

lI. Next, we use the Bayes theorem, in order to 'in- 
vert' the role of random variables and known param- 
eters; we obtain thus the probability density of 0~, under 
the condition that the three moduli R1, R2, R3 (de- 
pending on vector L) are known 

p(o~IRI, R2,R3). [see equation (6)] 

Finally from this last expression, we obtain immedi- 
ately the desired probability density p(c~[ all moduli); 
this is given by the final expression (7). 

I. The joint probability density of the moduH 

The change of variable (polar coordinates instead o 
Cartesian coordinates). 

(A~,BO -+ (R1,~ol) etc. 

yields a Jacobian: R1. R2 • R3. Thus, in order to ob- 
tain the probability density of the moduli, we have to 
integrate over the three phases: 

p(RI, R2,R~)IoO 

= R1R2R 3 . P(E1,E2, E3[~)dfoadq72d~03. 
O1=0 0 2 = 0  ~o3=0 

(4) 
The integration (Messager, 1972) is outlined in the 
Appendix. The final result is: 

p(R1,R2,R3[oO 

= RtR2RaD3-1/2 exp ( -  DuR~ " 2 2 - D22R2- D33R3) 
o o  

x [Io(~)Io(y)Io(~) + 2 ~ ( -  1)2I,(~)I,(y)Ir(:~cosry (5) 

where It(x) is a modified Bessel function of order r, 
and 

x=2R2R31D321 y=2RxR3IDx3[ z=2R1R2IDx2[. (5a) 

ID121 etc., are the moduli of minors of determinant/)3, 

10231 = 031(] U,I'I fx, l 2 + l U g _ , [  2 
--21U~U~UK-HI COS~) a/2, (5b) 

7 = a - - t a n  -~ a - t a n  -1 b - t a n - ~ c ,  5c) 

IU, U~I sin 
a= IUHUKI cos ~ - IUK-n l  (5d) 

(b and c are symmetrically obtained by permutation of 
the subscripts H, K, K - H ) .  

II. The probability density of the structure invariant 
p(a]Rx,R2,R3) 

Equation (5) expresses the joint probability law of the 
moduli RI, R2, R3 under the condition that c~ is fixed. 

Conversely, one can obtain probabilistic informa- 
tion on ~, under the condition that Rx, R2, R3 are 
fixed, by using the fundamental theorem of condi- 
tional joint probabilities, also called Bayes theorem. In 
a more concise notation we use the three dimensional 
column vector RL: (R1, R2, R3). 

Then, this theorem states that for two random vari- 
ables RL and c~, we have: 

p(RL[~), p(oO=p(RL, OO=p(oClRL). p(RL) (6) 

p(c~IRL) =p(RLI~) . P(oO/p(RL), (6a) 

where the denominator depends solely on RI, R2, R3 
and can be considered as a constant with respect to c~: 

K ' =  1/P(RL) . 
Therefore: 

P(~IRL) = K'p(~).  p(RL[~) (6b) 

where p(~) is the a priori probability density of ~t, i.e. 
assuming that we only know the values of the moduli 
IU.I, IUKI, IU~_.l having no information about the 
moduli R1, R2, R3. This expression is already known 
(Cochran, 1955; Hauptman, Fisher, Hancock & 
Norton;  Cooper, Norton & Hauptman, 1969): 

p(~) = exp (A cos ~) 
2zd0(A) ' 

A = 2 N  -1/2 IEHEKEu-~:I. 

We can now apply the axiom of joint probabilities for 
vector L running over all reciprocal lattice points: 

n 

P(aIRL1...RLj...RLn)=Kp(oO II p(RLjIa) (7) 
j= l  

where H denotes the n-fold product over j, comprising 
all vectors Lj for which the three corresponding moduli 

RI = lEd R2 = IE21 R3 = IE3I 
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are located within the observable Ewald sphere. There- 
fore, equation (7) is the desired expression of 

p(c~l all moduli). 

Remark: In the above formula we assume that the 
Rz's are mutually independent. This is, of course, only 
an approximation. 

Equation (7) is remarkable in the sense that it rep- 
resents a probability expression of one phase invariant 
a as a function of all observed moduli. The practical 
use of (7) has been examined by Sarrazin (1971). De- 
tailed results will be published later. 

Equation (7) can also be connected with an attempt 
to obtain a from the probability density of Z (Tsouca- 
ris, 1970; Hauptman, Messager, Speck & Vitterbo, 
1970): 

Z=(IE, I ' -  1) (IEL_n[ 2 -  1) ([EL_KI 2 -  1). 

It may be of interest to suggest that more informa- 
tion about the phases can be obtained, in a similar 
way, if one is able to perform the general integration 
(for m > 4) of equation (1) over the m phases ~0~... ~0,,,. 
Further work is under preparation along these lines. 

This work is a further development of ideas worked 
out during a workshop on direct methods organized 
by the Centre Europ6en de Calcul Atomique et Mol6- 
culaire (C.E.C.A.M.) in Orsay, France (September- 
October 1970). The authors are indebted to H. Haupt- 
man for helpful discussions. 

APPENDIX 
First we write Q3 as: 

0 a =  OnlEd z + D22[ E2I 2 + D331E3I 2 

+[D21E2E~ + D12E~EI]+ E3[DatE'~ + DazE'~] 

+ E~[D~3E~ + Dz3E2]. 

Let us set: 
B=IB[ e'a=DalE~ + D32E~ 

Dp~= ID~I exp (ixp~) , p, q = 1, 2, 3 .  

By introducing Q3 in (4), we obtain: 

p(R1, R2, R3) 

= (270-3D3 ~/2 exp [ - ( D n g  2 + D22 R2 + DaaR2)] 

x f f  expt-2R1gz[Dlzlcos(~o2-qh+x21)d(&drp2 
O1 ~2 

x I exp [-2RaIB[ cos (,~+/~)d,~. 
d 4~3 

The integration over ~3 immediately yields 

2rcIo(2RalBI) . 

Next, the above expression is expanded by using the 
known formula 

Io(I/~Z+ rz- z:,. cos o)= Ioo,)Io~. 

+2  ~ ( -  1)rL~x)I.~. cos rO 
r = l  

and recalling that 

2R31BI = [x z + y2 _ 2xy cos (n + qh - qh + xal + x23)] t/2. 

The integration over (P2 is performed, by using the 
formula 

2n 

f cos ru e-Z . . . .  du= 2nit( z) D O 

,0 

Then, the integration on qh is trivial, and we obtain 
finally equation (7). 

We notice, that y can be expressed in a simple way 
in terms of the phases x12 etc. of the minors D12 etc. : 

~) = X12 --]- X23 --1- X31 • 

Note: When this work was completed the authors 
learned that Hauptman [1971; equation (6.25)] has 
independently derived an expression nearly identical 
to equation (5) (to the order N-1/2). A lengthy calcula- 
tion has shown that the definition of angle ~, [equation 
(5c) of this paper] and angle r/ (equations 6.23 and 
6.24 of Hauptman's paper) are strictly equivalent. 
Finally, the only difference concerns the factor 031/2 
in equation (5), whereas a factor D~ -1 (denoted by A) 
appears in Hauptman's paper. It seems that equation 
(5) is the correct expression to the order N-l/z. 
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